What are the factors that decide whether an IP is to be converted to a component or not?

There are certain guidelines that are used to decide whether or not an IP should be converted to
a component or not. When an IP implements a specific function and has a small set of inputs,
outputs and resources; it can be converted to a component.

If one of the following is a characteristic of an IP, then that IP should not be encapsulated to a
component:

Single Instance fixed function blocks like DelSig ADC is used

Too much usage of abundant resources like UDBs, DAC

Too much usage of less obvious resources like Flash, Analog routing
Operates only under certain conditions like CPU or Bus clock speed
Multiple instances of IP cannot be implemented

v kewnNne

If IP violates any of the rules listed above and still it is encapsulated into a component, then
relevant limitations and issues should be communicated to the user as soon as they make an
attempt to use them.

What are the different options for creating a component and which one should be used?
There are primarily two options for creating a component in PSoC Creator:

1. Schematic based component: Schematic based components are created by using existing
components in PSoC Creator. You may add more than one component into a schematic and
then set them to function combined together as a component. You can also create APIs
associated with the new component. This method is very useful when a part of the
functionality of a component to be created can be achieved by existing component.

Following is a screenshot of a simple schematic based component. This component uses
already existing look up table component along with two input and one output terminal to
implement a custom up-down counter.

LUT 1
LUT
—in0 out0 |-
—in1 out1
—in2 out?
up E=—{in3
clock =—{>clock

(0]
[1]
[2]

count[2:0]

There is a symbol generated for the same component which looks as follows:

UpDownCounter_N

UpDownCounter

up
+ >clock

count[2:0] =

Refer to following training modules to learn more about schematic based components.
PSoC Creator 110: Schematic Components

PSoC Creator 111: Component Parameters

PSoC Creator 112: Introduction to Component APl Generation

Verilog based component: These components are written by user in verilog. These
components generally are implemented in the PLDs within the universal digital blocks
(UDBs) of PSoC 3/5. User can optionally use the datapaths of UDBs as a part of these
components. In order to use the datapath in verilog based components, a separate tool
called ‘Datapath Configuration Tool’ is provided with PSoC Creator. This tool is accessible
from the Start menu of Windows at Start - All Programs = Cypress = PSoC Creator 1.0 2>
Component Development Kit = Datapath Configuration Tool. Following is the screenshot of

this tool when a file is opened in it:

http://www.cypress.com/?rID=40327
http://www.cypress.com/?rID=40328
http://www.cypress.com/?rID=40329

BB C:\Documents and SettingslakaylMy Documents\PSoC Creator 1.0\Customer Projects\Q2\BlankiBlank.cydsniB_UART_v2_0\B_UART v2_0.v - Datapath Configuration Tool

Fle Edt View Help

Configuration: | IART_TX_SHIFTER_DP_CONFIG -

CFGRAM o]
Resst Reg BinaryValue FUNC SRCA SRCE SHIFT QE‘SJR é;\é’R CFBEN CISEL SISEL CMPSEL Comment
E] FRegl 00000000 | 00000000 | PASS A0 oo PASS NONE NONE DSBL CFGA CFGA CFGA IDLE

[) Feo 0o00000O | D00D000D | PAsS A0 00 PASS |NONE NONE DSBL CFBA | CFGA CFG4 | IDLE

) oo 00000000 | 00000000 | PasS a0 00 PASS |NONE | NONE | DSEL CFBA | CFGA | CFG4 | IDLE

[) Reo2 cooonooo | 11000000 | Pass | AD 00 PSS |FD NOWE |DSBL CFGA |CFGA CFGA | SENDSTART

D FRegd 00000000 | 00000000 | PASS A0 oo PASS NONE NONE DSBL CFGA CFGA CFGA IDLE

[) Aieos oo000010 | Di000000 | PASS A0 00 s AU NONE |DSBL CFBA | CFGA CFGA | SEND DATA(SH)

) Frece 00000000 | 00000000 | PesS a0 00 PASS |NONE | NONE | DSEL CFBA | CFGA | CFG4 | IDLE

[) Reo7 cooonooo | oooooo0n | Pass a0 0o PASS |NONE NOWE DSBL CFGA |CFGA | CFGA | SENDLAST BITPARITY/STOP1L2)
CFGS

AMASK A A

Resst Value mE B E R R0 Unused Comment

D G N I I

CFa11-10

Fowr CHASET CWAsKo TU Gl Cf C1 Gl Gl CT|Cl| |0 CO €O G0|CO|COCO| D oo

Walue Walue [7] [151 M4 [3 [0100 7] [151 4 [3 [0100

[Jr g [K [EN IEN KI5 G 6 N MR KR

CFG1312

Reset Einay Value MM |osEe oses | HASKT DMASKD MK pgr gisels | sISELA | Comment

[:] 00000000 | 00000000 A1_D1 L4101 ARITH ARITH DSBL DSBL DSBL DEF_O DEFSI DEFSI

CRG1514

Reset Binary Value PISEL g?tFT PIDYN MSE SI F1INSEL FOINSEL MSBEN MSB SEL Ean;‘BN CHAINFB CHAIN 1 CHAIND Comment

[Jotomnon i vivioom0 acc sR 0 BUS ENBL |BIT7 WOCHN | NOCHN |NOCHM |NOCHN

9

Verilog based components offer more flexibility and scope to optimize the resource
utilization. But, they demand considerably more rigorous tests as the whole functionality is
designed by the user.

For details about verilog synthesis, refer to “Warp Verilog reference guide” available in the
Help—>Documentation menu of PSoC Creator. For additional information regarding use of
datapath in the verilog based components, refer to following training modules.

PSoC Creator 113: PLD Based Verilog Components
PSoC Creator 210: Intro to Datapath Components
PSoC Creator 211: Datapath Computation

PSoC Creator 212: Datapath FIFOs

PSoC Creator 213: Multi-Byte Datapath Components
PSoC Creator 214: Datapath APl Generation

The two types of component creation methods described above can always be used together to
as per requirement. There is no restriction to stick to only one of these methods while
developing a component.

What is the design flow of component development?

A typical design flow for component development is as follows:

1. Create a library project

http://www.cypress.com/?rID=40330
http://www.cypress.com/?rID=48413
http://www.cypress.com/?rID=48414
http://www.cypress.com/?rID=48415
http://www.cypress.com/?rID=48416
http://www.cypress.com/?rID=48417

2.

New Project

Ciesign J: Other

PSoC Creator Installed Templates

@ PSal Library ig Empty Workspace

Creates a Library project to create C libraries and/or components.

M arnne: | MewComponent |

Advanced

Location:; |E:'\ | D

oK ‘ l Cancel

Create a component/symbol

- Start Page

[“workspace MewComponent' [1 Projects) | pg
nl"®
@ Project 'MewComp |

Add Component Tkem. ..

lj Import Component. ..

Update Conmpongnts

Build MewZomponent

— Clean NewComponent

|E| Clean and Build MewComponent
=3

Copy Chrl+C
NE

Exclude

Rename Fz

Unload/Reload Project

Dependencies.

Build Qrder...

Archive WorkspaceProject. ..

Build Settings...

Properties...

Add Component ltem

Templakes:

Symbol

" ¢| Empty Symbal
Implementation

L ﬂ S chematic

T .
=] Yerilog File

Surnbol Yizard

@ S chematic Macro

[£

|Ereates a symbol using a wizard,

T arget
Genenc Device Item name: CustamComp
F armily: Component name: CuztomComp
Device: Deztination: MewCompaon
| | Create Hew W | | Cancel

From the symbol wizard, select the input and output terminal which are to be used in

the design.

Symbol Creation Wizard

Add Mew Terminalz
M ame Type

inputSignal

DIGITAL = |INPUT

W

4 outputSignal | DIGITAL (R v

Syrnbol Preview

Help
Chek. in the raw cell ta add/edit terminals.

Double-Click an a row header to delete a terminal,

W

I inputSignal outputSignal =

CustomComp

Murmber of Terminalz Added

Inputz -1
Outputs ;1
0wtz 0

OF. J | Carizel

Define symbol parameters

CustomComp_N

CustomComp

inputSignal outputSignal

g2 Paste Chrl+y =
Select all Chrl+a
£oom 4

Fﬂ. Swmbal Parameters. .. |

Generate Yerilog

Properties

Parameters Definition

I arme

C_REMOVE

Type %lﬁl

Cv_SUPPRESS_API_GEM

IMSTANCE_MNAME

» | EEETCI | |

I3:- z
biool falze B Mizc
baal false Categaory Misc
Check Rz True
string =GetSh D escriptic

Digplaydr Falze
Hardware Falze

* Fiead Onl False
Tahb Basic
Yalidatorz 0 Vahdator
"Wizible True

& il >

:\ Formals }_L-:u:als] q [

Hame: inputParameter Category

Uiz I Parameter Categony within a

Yalue: 0 gory

Tahb
Types... |I k. J | Cancel

© © N oW

Create the implementation
i. Implement using the schematic based components. Click here for more details.
iii. Implementation completely in Verilog. Click here for more details.

Create API files — Please click here for more details

Customize the Component — click here to understand the benefits of customizer.
Add Bootloader support (if needed)

Create datasheet for the component

Do tests and add the specifications in Datasheet

Include the component library in a project, Build & test the component

Design01 - PSoC Creator 1.0 [C:)...\MyFAQ\Design01\Desig
File Edit “ew Debug | Project | Build Toaols ‘Window Help

eV N A= R
Workspace Explarer
S
B Workspace ‘Design01' [1 Pr
= EI Project 'DesignD1"[C
Iﬂ' TopDesign.cysch
_*P Design0 . cydwr
1) Header Files
] deviceh
BT Source Files
] main.c +

el

) LI P

Update Components {Design01)

| Dependencies. ..

Build Order ...

Device Selectar. .,

Archive Warkspace/Project...

jg Designdl Resources

Look, in: |E} MewCaomponent. cylib V| @ _? o '

() CustomComp
.' MNewZomponent.cypri

B

My Fecent
Documents

@

Desktop

ty Documents

@

4y Computer

-

File name: |NewC0mp0nent.c_l,lpli hd | [Open]

bl Mebwork Files of type: | Froject Files [* cypri] w | [Cancel]

Dependencies

Dependencies]/Builu:l Crder]/Eh:ucutlu:uader

Frojects | Dre=zign e |

System Dependencies

Project Components Code
CyComponentLibrary
Uzer Dependencies ¥+ |+
Froject Components Code
MewComponent

|. OF. J | Cancel

Component Catalog (8., » I X

AHEQ W
3 &

= Qg Eu:um orents

For more details about how to add dependencies please click here.

What are the guidelines when it comes to using a single instance fixed function block as a part of
the component?

Single-instance fixed-function blocks such as DelSig ADC, CAN, USB, and 12C should not be used
as a part of the component.

1. Recommended way is to provide a notification to the USER in the configuration window that
he needs to place the specified fixed function block with the given name and configuration
parameters. Below screen shot provides a similar implementation when EZI2C is required
for the operation.

Configure ‘CapSense_CSD

M arne: | CapSense |

izeneral ‘Widgets Config | Scan Order | Advanced " Tune Helper | Built-in | 9 B

Enable Turne Helper

Instance name for E2l2C component: |EZI2C

Please open EzI2C component customizer and
assign these properties:

Sub-address size: bit

Data Sheet] 4 | | Apply | | Cancel

2. If option 1 cannot be used, then an option to add multiple configurations should be
provided in the component configuration window to ensure that component should not
block the usage of that particular module. For example, below snap shot shows support for
adding additional interface for USB when one interface is used for USBUART block.

Configure 'USBFS: ?)X

Name: [USBLART_1 |

Device Descriptor] String Descripkor | HID Descriptor | Audio Descriptar | CDC Descriptar | Advanced | Built-in 4 b
=R Descripterool) %] | Add Interface |+ | 5 v ﬁ b |
= E’ Device Descriptor
4@l Configuration Descriptor Configuration Abtriby e
= ! . |Add Interface R
! Configurms T Cypress Semiconduc
=

s ore o
Device Power Self Powered 4
Femote Wakeup Dizabled hd

= I = I =]

3. If neither Option 1 nor Option 2 can be used, then the limitations shall be clearly
communicated in the PSoC Creator component such that the user becomes aware of those
issues as soon as an attempt is made to use the component.

