
Q. What are the factors that decide whether an IP is to be converted to a component or not?

A. There are certain guidelines that are used to decide whether or not an IP should be converted to

a component or not. When an IP implements a specific function and has a small set of inputs,

outputs and resources; it can be converted to a component.

If one of the following is a characteristic of an IP, then that IP should not be encapsulated to a

component:

1. Single Instance fixed function blocks like DelSig ADC is used

2. Too much usage of abundant resources like UDBs, DAC

3. Too much usage of less obvious resources like Flash, Analog routing

4. Operates only under certain conditions like CPU or Bus clock speed

5. Multiple instances of IP cannot be implemented

If IP violates any of the rules listed above and still it is encapsulated into a component, then

relevant limitations and issues should be communicated to the user as soon as they make an

attempt to use them.

Q. What are the different options for creating a component and which one should be used?

A. There are primarily two options for creating a component in PSoC Creator:

1. Schematic based component: Schematic based components are created by using existing
components in PSoC Creator. You may add more than one component into a schematic and
then set them to function combined together as a component. You can also create APIs
associated with the new component. This method is very useful when a part of the
functionality of a component to be created can be achieved by existing component.

Following is a screenshot of a simple schematic based component. This component uses
already existing look up table component along with two input and one output terminal to
implement a custom up-down counter.

There is a symbol generated for the same component which looks as follows:

Refer to following training modules to learn more about schematic based components.
PSoC Creator 110: Schematic Components
PSoC Creator 111: Component Parameters
PSoC Creator 112: Introduction to Component API Generation

2. Verilog based component: These components are written by user in verilog. These

components generally are implemented in the PLDs within the universal digital blocks
(UDBs) of PSoC 3/5. User can optionally use the datapaths of UDBs as a part of these
components. In order to use the datapath in verilog based components, a separate tool
called ‘Datapath Configuration Tool’ is provided with PSoC Creator. This tool is accessible
from the Start menu of Windows at Start All Programs Cypress PSoC Creator 1.0
Component Development Kit Datapath Configuration Tool. Following is the screenshot of
this tool when a file is opened in it:

http://www.cypress.com/?rID=40327
http://www.cypress.com/?rID=40328
http://www.cypress.com/?rID=40329

Verilog based components offer more flexibility and scope to optimize the resource
utilization. But, they demand considerably more rigorous tests as the whole functionality is
designed by the user.

For details about verilog synthesis, refer to “Warp Verilog reference guide” available in the
HelpDocumentation menu of PSoC Creator. For additional information regarding use of
datapath in the verilog based components, refer to following training modules.

PSoC Creator 113: PLD Based Verilog Components
PSoC Creator 210: Intro to Datapath Components
PSoC Creator 211: Datapath Computation
PSoC Creator 212: Datapath FIFOs
PSoC Creator 213: Multi-Byte Datapath Components
PSoC Creator 214: Datapath API Generation

 The two types of component creation methods described above can always be used together to

as per requirement. There is no restriction to stick to only one of these methods while
developing a component.

Q. What is the design flow of component development?

A. A typical design flow for component development is as follows:

1. Create a library project

http://www.cypress.com/?rID=40330
http://www.cypress.com/?rID=48413
http://www.cypress.com/?rID=48414
http://www.cypress.com/?rID=48415
http://www.cypress.com/?rID=48416
http://www.cypress.com/?rID=48417

2. Create a component/symbol

From the symbol wizard, select the input and output terminal which are to be used in

the design.

3. Define symbol parameters

4. Create the implementation

i. Implement using the schematic based components. Click here for more details.

ii. Implementation completely in Verilog. Click here for more details.

5. Create API files – Please click here for more details

6. Customize the Component – click here to understand the benefits of customizer.

7. Add Bootloader support (if needed)

8. Create datasheet for the component

9. Do tests and add the specifications in Datasheet

10. Include the component library in a project, Build & test the component

 For more details about how to add dependencies please click here.

Q. What are the guidelines when it comes to using a single instance fixed function block as a part of

the component?

A. Single-instance fixed-function blocks such as DelSig ADC, CAN, USB, and I2C should not be used

as a part of the component.

1. Recommended way is to provide a notification to the USER in the configuration window that

he needs to place the specified fixed function block with the given name and configuration

parameters. Below screen shot provides a similar implementation when EZI2C is required

for the operation.

2. If option 1 cannot be used, then an option to add multiple configurations should be

provided in the component configuration window to ensure that component should not

block the usage of that particular module. For example, below snap shot shows support for

adding additional interface for USB when one interface is used for USBUART block.

3. If neither Option 1 nor Option 2 can be used, then the limitations shall be clearly

communicated in the PSoC Creator component such that the user becomes aware of those

issues as soon as an attempt is made to use the component.

