

 Interfacing LM75 I2C Temperature Sensor
to PSoC® 1

 1

Project Name: Example_Temperature_LM75
Programming Language: C

Associated Part Families: CY8C29/27/24/22/21xxx, CY8C23x33,
CY7C603xx, CY7C64215, CYWUSB6953, CY8CLED02/04/08/16,

CY8CLED04D01/02/03/04, CY8CTxx110, CY8CNP102

Software Version: PSoC
®
 Designer

TM
 5.2

Related Hardware: CY3210 PSoC Eval1 Board
Author: Pushek Madaan

Objective
This Project demonstrates how to interface PSoC

®
 1 to an I

2
C temperature sensor (LM75) and display the temperature on the

LCD.

Overview
This project uses the I2CHW Master user-module to retrieve ambient temperature from the LM75 sensor at regular intervals of
time and display it on the LCD after required processing. Timer16 User Module is used to generate interrupt every one
second, on which the data is read from the temperature sensor and displayed.

Block Diagram

User Module List and Placement
The following table lists user modules used in this project and the hardware resources occupied by each user module.

User Module Placement

I2CHW System Resource

Timer16 DBB00 and DBB01

LCD Software Implementation

 2

User Module Parameter Settings
The following tables show the user module parameter settings for each of the user modules used in the project.

I2CHW User Module

Parameter Value Comments

Read_Buffer_Types RAM ONLY Only RAM data buffer is used.

CPU_Clk_speed_(CY8C27xA) Not CY8C27xA See the Notes section at the end of this table.

I
2
C Clock 100 K Standard Sets the I

2
C clock as 100 kHz.

I
2
C Pin P1[5]-P1[7]

Selects P1[5] and P1[7] for I
2
C communication. P1[5] is SDA and P1[7] is

SCL.

Notes

 When the Read_Buffer_Types is set to RAM ONLY, only RAM buffers are transmitted over I
2
C. To read and transmit data

from Flash, set the read buffer type to RAM or FLASH.

 The parameter CPU_Clk_speed is provided as a workaround for a silicon issue that was present in CY8C27x43A (Silicon
Rev. A) family of devices. In this family, read or write to the I2C_CFG and I2C_SCR registers occurred with CPU speed
less than 6 MHz. If the CPU speed is greater than 6 MHz, it is throttled down to 6 MHz when accessing the I

2
C registers

and restored after the access. This workaround is not required for families other than the CY8C27x43A family.

 The I
2
C Clock parameter is dependent on the SysClk. The I

2
C clock setting in the user module is based on a SysClk of 24

MHz. In devices which support slower Sysclk, the I
2
C clock is reduced by the same proportion. For example, if I

2
C clock is

set to 400 kHz and SysClk is set to 6 MHz, the actual I
2
C clock is only 100 kHz.

LCD User Module

Parameter Value Comments

LCDPort Port 2 Use Port 2 to connect LCD.

Bargraph Disable Disable the Bargraph feature.

Timer16 User Module

Parameter Value Comments

Clock VC3 Use the clock for the module as VC3 (10 kHz).

Capture HIGH Disable the software capture feature of the timer.

TerminalCountOut None Disable the terminal count output.

CompareOut None Disable the compare output.

Period 9999 Divide the source clock by 10000 to generate a 1 Hz signal.

CompareValue 5000 Set the compare value for comparing with timer counts.

CompareType Less Than Or Equal Sets the logical operation for the comparison.

InterruptType Terminal Count Trigger interrupt on terminal count.

ClockSync Sync to SysClk Synchronize the clock with SysClk.

TC_PulseWidth Full Clock
Terminal count should stay HIGH for full clock, not used in this
example

Invert Capture Normal Make the capture input as Active High, not used in this example

Note

 For more details regarding User Module parameters, please refer to UM datasheet which can be located from Start All
Programs Cypress PSoC Designer 5.2 Documentation User Module Datasheet STDUM.

 3

Global Resources
Important Global Resources

Parameter Value Comments

Power Setting [Vcc / SysClk freq] 5.0 V/24 MHz Selects 5 V operation and 24 MHz SysClk.

CPU_Clock SysClk/2 Selects 12 MHz as the clock input for the CPU.

VC1 = SysClk/n 10 VC1 output set to 2.4 MHz.

VC3 Source VC1 Set VC1 as the clock source for VC3.

VC3 Divider 240 Divides VC1 by 240 and generates a 10 kHz output.

Note

 Other parameters are left at their default value.

Hardware Connections
The schematic diagram for the project follows.

U2 (LM75) is a digital temperature sensor, which supports I2C protocol. This device has an integrated Sigma-Delta analog to
digital converter and I2C interface. It provides 9-bit digital temperature reading with an accuracy of +2

o
C. Pins A0, A1, and A2

are used to connect multiple LM75 to a single I
2
C bus and to hard wire the three least significant bits (LSB) of the device

address. In this example, all these lines are tied to GND. R1 and R2 are external pull up resistors as the I
2
C bus operates in

open drain mode. This schematic can be wired using the bread board area of the CY3210 PSoC Eval1 board.

 4

Operation
On reset, all hardware settings from the device configuration are loaded into the device and main.c is executed.

The following operations are performed by the firmware.

 Global interrupt is enabled.

 The I2CHW module is configured as Master and its interrupt is enabled.

 OneSecTimer is started and its interrupt is enabled.

 LCD is initialized and welcome message is displayed on Row 0.

 An infinite loop is entered where the following operations are performed:

 Check if the bReadTempFlag is set. This flag is set every second inside the OneSecTimer ISR

 If bReadTempFlag is set:

1. Clear the flag.

2. Read the temperature from the LM75 into variable iTemp by calling function ReadTemp. On power up, the LM75
internally sets its read pointer to the temperature register. Reading directly from LM75 returns the value from the
temperature register. I2CHW_fReadBytes function is used to read the temperature from LM75.

3. Convert the temperature into a floating point value and display on LCD. LM75 stores the temperature in bits D7
to D15 in the temperature register. The least significant 7 bits are “Don’t Care” bits. After reading the 16-bit
temperature from LM75, the 16-bit value is shifted right by 7 bits to move the 9-bit temperature value to bits D0 to
D8. The LSB represents 0.5

о
C. Therefore, the 9-bit temperature is multiplied by 0.5 to get the actual

temperature. This is converted to ASCII using ftoa and printed to LCD using the LCD_PrString function.

Timer ISR
The ISR for OneSecTimer is written in C. The ISR function is named as OneSecTimer_ISR and is declared as an ISR using
the following code in the beginning of main.c.

#pragma interrupt_handler OneSecTimer_ISR

If the function name is identical to the name of the assembly ISR found in OneSecTimerINT.asm file in PSoC Designer™, then
on interrupt, the control is automatically transferred to the C function (similar methodology is used in this code example). If the
function name is different from the default name, then an ljmp instruction should be placed either in boot.tpl or inside the
OneSecTimerINT.asm file to the C ISR.

Another advantage of using the identical name of the assembly ISR is user does not have to worry about the PSoC Designer
upgrade, as the control will never be transferred to OneSecTimerINT.asm file.

For more details about writing an ISR in C, refer to the following Knowledge Base article on the Cypress website:
Implementing an Interrupt Service Routine in C on the PSoC.

http://www.cypress.com/?id=4&rID=36720

 5

PSoC is a registered trademark of Cypress Semiconductor Corp. PSoC Designer is a trademark of Cypress Semiconductor Corp. All other
trademarks or registered trademarks referenced herein are the property of their respective owners.

 Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709
Phone: 408-943-2600

Fax: 408-943-4730
http://www.cypress.com/

© Cypress Semiconductor Corporation, 2009-2011. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.

This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

http://www.cypress.com/

