Q.

What is meant by component customization and how it is advantageous?

Customizing components refers to the mechanism of allowing custom code (C#) to modify the
default behavior of an instantiated component within PSoC Creator. This custom code can
customize the configure dialogue, customize symbol shapes, terminal names, counts or
configuration based on parameter values. It can generate custom verilog, C or assembly code
and interact with the clocking system.

The icyinstancecustomizer.cs C# source file provides the definitive parameters and return values
for the methods provided in the customizer interfaces. The cydsextensions project contains the
necessary source code for customization. This project is included with PSoC Creator, and the
documentation is located in the PSoC Creator Customization APl Reference Guide.

How to estimate the resources like macro cells, status registers etc. used by a particular
component?

With the current version of PSoC Creator, calculation of resource usage has to be done
manually. Following steps need to be performed in order to estimate the resource usage:

1. Forresource usage like: Macro cells, status registers etc.

i. Create a blank project and build the same to get a note of the resources used.
ii. Go to the Results tab in workspace explorer and open <project_name>.rpt file.
iii. Take a note of resources used from the Technology mapping summary as shown
below:

<CYPRESSTAG name="Technology mapping summary" expanded>

Resource Type : Used : Free : Max : % Used

Digital domain clock dividers 0 8 : 8 0.00%
Analog domain clock dividers 0 4 : 4 0.00%
Pins 3 69 : 72 4.17%

Macrocells 0 192 : 192 0.00%

Unique Pterms 0 384 : 384 0.00%

Datapath Cells 0 24 : 24 0.00%

Status Cells 0 24 : 24 0.00%

Control/Count7 Cells 0 24 : 24 0.00%

Sync Cells 0 96 : 96 0.00%

Drgs 0 24 : 24 0.00%

Interrupts 0 32 : 32 0.00%

DSM Fixed Blocks 0 1 : 1 0.00%

VIDAC Fixed Blocks 0 4 4 0.00%
SC Fixed Blocks 0 4 4 0.00%
Comparator Fixed Blocks 0 4 4 : 0.00%
Opamp Fixed Blocks 0 4 4 : 0.00%
CapSense Buffers 0 2 2 0.00%
CAN Fixed Blocks 0 1 1 0.00%
Decimator Fixed Blocks 0 1 1 0.00%
I2C Fixed Blocks 0 1 1 : 0.00%
Timer Fixed Blocks 0 4 4 0.00%
DFB Fixed Blocks 0 1 1 0.00%
USB Fixed Blocks 0 1 1 0.00%
LCD Fixed Blocks 0 1 1 0.00%
EMIF Fixed Blocks : 0 : 1 : 1 : 0.00%

LPF Fixed Blocks : 0 : 2 2 0.00%

iv. Place the component and build the project. Make sure that you resolve all the errors
before proceeding to next step.

v. Once this is done again go to the same rpt file and take a note of the Technology
mapping summary. Difference of the two indicates the resources used by your
component.

<CYPRESSTAG name="Technology mapping summary" expanded>

Resource Type : Used : Free : Max : % Used
Digital domain clock dividers : 3 : 5 : 8 ¢ 37.50%
Analog domain clock dividers : 0 : 4 : 4 : 0.00%
Pins : 15 : 57 : 72 : 20.83%
Macrocells : 34 . 158 : 192 : 17.71%
Unique Pterms : 62 : 322 : 384 : 16.15%

Total Pterms : 77 : :
Datapath Cells : 4 : 20 24 : 16.67%
Status Cells : 4 : 20 24 16.67%
Control/Count?7 Cells 8 16 24 : 33.33%
Sync Cells 0 80 80 0.00%
Drgs 0 24 24 0.00%
Interrupts 7 25 32 21.88%
DSM Fixed Blocks 0 1 : 1 0.00%
VIDAC Fixed Blocks 0 4 4 0.00%
SC Fixed Blocks 0 4 4 0.00%
Comparator Fixed Blocks 0 4 4 0.00%
Opamp Fixed Blocks 0 4 4 0.00%
CapSense Buffers 0 2 2 0.00%
CAN Fixed Blocks 0 1 1 0.00%
Decimator Fixed Blocks 0 1 1 0.00%
I2C Fixed Blocks 0 1 1 0.00%
Timer Fixed Blocks 1 3 4 25.00%
DFB Fixed Blocks 0 1 1 0.00%
USB Fixed Blocks 0 1 1 0.00%
LCD Fixed Blocks 0 1 1 0.00%

EMIF Fixed Blocks : 0 : 1 1 0.00%

LPF Fixed Blocks 0 : 2 2 0.00%
SAR Fixed Blocks : 0 : 2 2 0.00%

2. For memory usage
i. Compile an empty project and take a note of the memory used.

ii. Place the component and call the required APIs and check the memory usage.
jiii. Difference of the two is the memory used by the component for the APIs you have
called.

P.S.: Memory usage will vary based on the APIs called because unused APIs will not be
allocated any space in the memory. It'll also depend on the optimization level used for
the compilation.

How to test a component?

Reusable designs are encapsulated as components in a PSoC Creator library project. However
neither a library project nor a component by itself is very useful. Library projects cannot be built,
programmed or tested. So one or more standard projects should be developed along with the
component, for the purpose of testing or demonstrating the functionality of the reusable design
in that component.

The reference component should be included with each of its parameters set to as many
different settings as possible. Note that in order to do this either multiple instances of the
component may need to be used or multiple test / demo projects may need to be created. All
functions in the component’s APl should be called at least once. All macros should be used at
least once. As much as possible, the test projects should support both PSoC 3 and PSoC 5, in
various configurations. For example, standard and bootloadable, debug and release, different
PSoC 5 compilers, and different compiler optimization settings.

