

Pseudo Random Sequence Generator

March 24, 2012 1

Example Name: Example_PRS8

Programming Language: C
Associated Part Families: CY8C24x23, CY8C27x43, CY8C29x66

 CY8C24x94, CY8C21x34

Software Version: PSoC
®
 Designer™ 5.2

Related Hardware: CY3210-PSoCEval1

Author: Dineshbabu Mani

Objective

This project demonstrates the operation of an 8-bit pseudo random sequence (PRS) generator using PSoC
®
 1.

Overview
An 8-bit PRS generator generates a random number sequence for the given modular polynomial and seed value
at an interval of 10 ms and transmits the series using a TX8 serial transmitter. The generation of the PRS
sequence is initiated by a switch press.

User Module List and Placement
The following table lists the hardware resources occupied by each user module.

User Module Placement

Counter16 DBB01 (LSB), CB02(MSB)

PRS8 DBB00

TX8 DCB03

User Module Parameter Settings

The following table lists the parameter settings of the user modules.

Counter16

Parameter Value Comments

Clock VC2 Input clock is 100 kHz. (VC2 = VC1 / 15 where VC1 = Sys.Clk / 16)

Enable High Enables the counter

CompareOut Row_0_Output_0 The output is used as clock for PRS generator

TerminalCountOut None Not applicable

Period 999 Divides the input clock by 1000 to generate the output frequency of 100 Hz

CompareValue 500 Sets the duty cycle of the Counter Output. Duty cycle is set to 50%

CompareType Less Than or Equal Not applicable

InterruptType Terminal Count Counter generates an interrupt on terminal count. PRS8 is read in the interrupt

ClockSync Sync To SysClk Synchronizes the input clock with source clock (Sys.Clk)

InvertEnable Normal Enables the Counter to Active High

http://www.cypress.com/?rID=2541

Example_PRS8

March 24, 2012 2

PRS8

Parameter Parameter Parameter

Clock Row_0_Output_0 The clock to the PRS8 is derived from the Counter

OutputBitStream None Not applicable

CompareOut None Not applicable

CompareType Less than Or Equal Not applicable

ClockSync Sync To SysClk Synchronizes the input clock with source clock (Sys.Clk)

TX8

Parameter Value Comments

Clock VC3 Set to 153.846 KHz which is eight times 19.230 kbps (required Baud rate)

Output Row_0_Output_1
Port pin P0.1 is assigned as the output for serial Transmitter. The output from the
TX8 block is routed to this pin through the Row_0_Output_1 net and
Global_Out_Even_1

TX Interrupt Mode TxRegEmpty Not applicable

ClockSync Sync to SysClock Synchronized with the SysClock (Source Clock)

Data Clock Out None Not applicable

Note: The clock to the TX8 user module should be eight times the desired baud rate.

Global Resources

Important Global Resources

Parameter Value Comments

CPU Clock SysClk/2 Sets the CPU frequency to 12 MHz

VC1 16 Divides the Sys.Clk by 16

VC2 15 Divides VC1 by 15

VC3 Source SysClk/1 System clock (24 MHz) is the source for VC3 divider

VC3 Divider 156
Divides Sys.Clk by 156 to get 153.846 KHz clock which is eight times the desired
baud rate (19.230 Kbps)

Note: Leave all other global resources at their default.

Pin Configuration

PinOut

Pin Select Drive Interrupt

Port 0_0 StdCPU Pull-down Rising edge

Port 0_1 GlobalOutEven_1 Strong Disable Int

Example_PRS8

March 24, 2012 3

Hardware Connections

Figure 1. Project Schematic

U2 is MAX232, an RS232 transceiver, which is used to translate the TTL level TX signal from PSoC to ±10 V
RS232 level. PSoC is connected to the PC through a JP1, a DB9 connector.

The code example can be tested using the CY3210-PSoCEval1 board. This board has an RS232 transceiver and
a serial port connector. To test the code example using the CY3210 board, make the following connections:

 Connect P00 of J6 to SW of J5 (which is connected to switch S1)

 Connect P01 of J6 to TX of J13.

Operation
Load all the hardware settings from the device configuration into the device and execute main.c. The following
operations are performed in main.c:

 Seed and polynomial for the PRS are set and the PRS is started. The input clock for the PRS generator is
derived from a 16-bit counter. The counter divides the input clock of 100 kHz (VC2) by 1000 to produce a
100 Hz clock to the PRS generator. This code example uses the following polynomial and seed values:

 Seed Value = 1

 Modular Polynomial = (8, 6, 5, 4)

 Code word Length = 255

 The polynomial and seed values are entered in hex form inside main.c. For example, if the modular
polynomial and seed values are 8, 6, 5, 4, and 1 respectively, then they are entered in main.c in the following
manner:

 Modular polynomial  0xb8 (in binary form 10111000)

 Seed value  0x01

For more details about the modular polynomial and seed value representations, refer to PRS8 User
Module datasheet.

 TX8 is started with no parity. The welcome string is sent over the serial port to the HyperTerminal after
clearing the HyperTerminal by sending a new page character.

http://www.cypress.com/?rID=2541
http://www.cypress.com/?rID=3076
http://www.cypress.com/?rID=3076

Example_PRS8

March 24, 2012 4

 GPIO interrupt is enabled on port pin P0 [0].This generates an interrupt when the switch is pressed.

 The rest of the operations are performed inside the GPIO and Counter ISR. The ISRs for GPIO and Counter

are written in C and are declared as ISRs using the #pragama interrupt_handler directive. An ljmp

instruction to the C GPIO_ISR is placed inside the PSoCGPIOINT.asm file within the user code markers. An

ljmp instruction to the CounterISR is placed inside the interrupt handler function inside CounterINT.asm.

GPIO ISR: The following operations are performed inside the GPIO interrupt when the switch is pressed.

1. Bring the cursor to the beginning of line in HyperTerminal.

2. Send the seed value over serial port as the first number in the random number sequence.

3. Start Counter.

4. Mask GPIO interrupts.

5. Reading the random numbers now takes place inside the Counter’s ISR.

Counter ISR: The counter generates an interrupt every 10 ms. The following operations are performed inside
this interrupt:

1. Stop both PRS and Counter and get the random number from PRS module, by using the bReadPRS
function. Store the value in the random sequence array in RAM.

2. Check if the read number is equal to the seed value. If the number is equal to the seed it means that the
PRS has generated one full sequence of random numbers. If the number is equal to the seed, perform
the following operations:

 Send the values of seed, polynomial, and length of sequence over serial port.

 Print Welcome.

 Reset the pointer to the random number array.

 Start PRS.

 Clear all posted GPIO interrupts.

 Unmask GPIO interrupt.

3. If the random number is not equal to seed value:

 Send the obtained random number to HyperTerminal over serial port.

 Start PRS and Counter.

After setting up the HyperTerminal as explained in “Testing the Project” on page 6, click Call in the HyperTerminal
and reset the PSoC. The HyperTerminal window displays the following message.

Figure 2. Welcome Screen on HyperTerminal

After the switch connected to the P0[0] pin is turned on, the PRS generator generates random numbers for every
10 ms and these are displayed in the HyperTerminal (a maximum of 13 random numbers in a row). The
generated random numbers are stored in a character array and the length of PR sequence for the given
polynomial is calculated by PSoC and is transmitted over the serial port to HyperTerminal.

Example_PRS8

March 24, 2012 5

The following figure shows the entire PR sequence and its length observed in HyperTerminal.

Figure 3. PR Sequence for Polynomial (8 6 5 4) and Seed Equal to 1

The same sequence is repeated when the switch is pressed again.

If the modular polynomial is changed to 8,7,4,3 (0xCC); the following PR sequence with length 217 is generated.

Figure 4. PR Sequence for Polynomial (8 7 4 3) and Seed Equal to 1

Example_PRS8

March 24, 2012 6

Testing the Project

To test the project, HyperTerminal (or any other terminal program) may be used. The following explains how
HyperTerminal can be configured in Windows.

1. Connect the CY3210 board to the PC serial port using a serial port cable.

2. Start HyperTerminal using Start  All Programs  Accessories  Communication  HyperTerminal

3. Enter a name for the connection, such as Example_PRS8 and select OK.

Figure 5. Give a Name to the Connection

4. In Connect To option, select the desired serial port (for example, COM2) from the Connect using list and
click OK.

Figure 6. Select the Serial Port

5. In COM2 Properties, configure the following parameters:

 Bits per second = 19200

 Data bits = 8

 Parity = None

 Stop Bits = 1

 Flow Control = None

 Click OK

Example_PRS8

March 24, 2012 7

Figure 7. COM2 Properties Window

6. At this point, the HyperTerminal connects to COM2 and is ready to be used with the PRS8 code example.

Turn on the switch connected to P0[0] and get the random numbers printed on HyperTerminal for every 10 ms.
The length of the PR sequence for the given modular polynomial is calculated by PSoC and is displayed in
HyperTerminal. After printing the entire sequence, if the switch is again turned on, the same sequence is repeated
on HyperTerminal.

Upgrade Information

The ljmp instructions to the C ISRs for GPIO and Counter are placed inside the user code markers that are

inside the PSoCGPIOINT.asm and CounterINT.asm files. These changes are preserved when the project is
generated and built. If the source files for the PSoCGPIOINT.asm and CounterINT.asm files change in the future
releases of PSoC Designer

TM
, these instructions may be overwritten. After PSoC Designer upgrade, if the project

is not working, verify the following:

 Open PSoCGPIOINT.asm file and check if there is an ljmp _GPIO_ISR instruction present in the user code

area in the PSoC_GPIO_ISR function. If not, add this line of code within the user code markers.

 Open the CounterINT.asm file and check if there is an ljmp _CounterISR instruction present inside the

user code marker of the _Counter_ISR function. If not, add this line within the user code markers.

Example_PRS8

March 24, 2012 8

PSoC is a registered trademark of Cypress Semiconductor Corp. PSoC Designer is a trademark of Cypress Semiconductor Corp. All other
trademarks or registered trademarks referenced herein are the property of their respective owners.

 Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709
Phone: 408-943-2600

Fax: 408-943-4730
http://www.cypress.com/

© Cypress Semiconductor Corporation, 2009-2011. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.

This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

http://www.cypress.com/

