
Q. What is a Datapath configuration tool?

A. A UDB-based PSoC device datapath is a very small 8-bit wide processor with 8 states defined in a

“control store.” There are also five static configuration registers that help define the overall

operation. The control store and static configuration registers within the datapath can be

configured using the Datapath Configuration Tool. The Datapath Configuration Tool is used to

edit datapath instance configurations in a Verilog implementation of a PSoC component. For

more details on datapath tool, refer to section B of component author guide.

Q. What are the limitations of datapaths which need to be considered while creating a digital

component?

A. Following are the limitations of datapath:

1. Parallel input into the datapath is limited. This restricts the ability to use the datapath

where other hardware needs to provide a parallel value. Alternatives to parallel

hardware loading may be possible. If enough cycles are available, then a value can be

serially shifted in. If the CPU or DMA can get access to the value, then they can write the

value to a FIFO or register in the datapath.

2. Parallel output is possible, but the parallel output value is always the left input to the

datapath ALU. The left input to the ALU can only be A0 or A1, so that limits the output

to being A0 or A1, and it restricts the ALU operation that can be performed while using

parallel output to also use that value as the left input of the ALU function.

3. Only one ALU function can be performed at a time. If multiple operations are required,

then a multi-cycle implementation using an multiple of the effective clock may be

possible.

4. There are 8 dynamic operations available. This is typically enough operations, but for

some complex multi-cycle calculations (shift, add, inc) this can be a limitation.

5. Only 2 registers are read/writable by the datapath. There are up to 6 register sources

(A0, A1, D0, D1, F0, F1), but only 2 registers that can be written and then read back (A0,

A1).

Q. Can I simulate a Verilog based component?

A. Warp tool present inside the PSoC Creator can only be used for the synthesis of Verilog source

designs. There is no verilog simulator available with PSoC Creator. Although Cypress does not at

this time provide a Verilog simulator, some system files necessary for third party simulators to

provide pre-synthesis simulations have been made available. Chapter 5: Simulating the

Hardware of Component Author Guide provide details about some of the simulators which can

be used to simulate the PSoC Creator based Verilog design.

Q. What are the limitations of PLD which need to be considered while creating a digital

component?

A. Following are the limitations of using PLD logic:

1. The PLD does not have a direct path from or to the CPU. To get data from the CPU a

control register is used. To send data to the CPU a status register is used.

2. Maximum number of register bits equal to the number of UDBs * 8 (depends on the

selected device). The control and status registers can be used to augment this number

of bits, but neither of those resources provides a register that can be both written and

read by the PLD.

3. 12 input bits per PLD limits the efficiency and performance of wide functions. For

example a wide mux function does not map well into the PLD.

Q. What are the primitive gates which can be used in Verilog file?

A. Following are the primitive gates which can be used in a verilog file:

and - AND logic

nand - NAND logic

or - OR logic

nor - NOR logic

xor - XOR logic

xnor - XNOR logic

buf - Buffer

not - NOT logic

bufif0 - Tri-state buffer with active low enable (c1)

bufif1 - Tri-state buffer with active high enable (c2)

notif0 - Tri-state buffer with inverted output and active low enable (c3)

notif1 - Tri-state buffer with inverted output and active high enable (c4)

Examples:
and i1 (f, a, b, c) ; // 3-input (a, b, c) and gate

and i2 (f, a, b, c, d); // 4-input (a, b, c, d) and gate

xor i3 (f, a, b) ; // 2-input (a, b) xor gate

buf i1 (f1, f2, a) ; // 2 output (f1, f2) buf gate

not i2 (x, y, a) ; // 2 output (x, y) not gate

Q. What are the limitations on using Datapath config tool in a State machine Design?

A. Datapath can be configured dynamically. The maximum possible such configurations are 8. The

Configuration RAM is of 8-word x 16-bits size. And each 16-bit is required for one particular

configuration. If there are more states in the design, then some states has to be merged

together.

Q. Does the Datapath have FIFO capability for streaming applications?

A. Yes. It has two 4-word depth FIFOs. They can be used in both Input & output modes.

More details on using these FIFOs are explained in the Component Author Guide & Training

videos (refer to previous question on FIFOs).

Q. Can I synthesize tri-state logic in Verilog?

A. Warp does not synthesize tri-state logic. In order to include tri-state logic in a Verilog module

the cy_bufoe must be instantiated. The tri-state output of this module, y, must then be

connected to an inout port on the Verilog module. That port can then be connected directly to a

bidirectional pin on the device. The feedback signal of the cy_bufoe, yfb, can be used to

implement a fully bidirectional interface or can be left floating to implement just a tri-state

output.

module ex_tri_state (

 out1,

en,

 in1

);

 output out1;

 input en;

 input in1;

cy_bufoe buf_instance (

 .x(in1), // (input) Value to send out

 .oe(en), // (input) Output Enable

 .y(out1), // (inout) Connect to the bidirectional pin

 .yfb() // (ouptut) Value on the pin brought back in

);

Endmodule

Q. How to access the configuration parameters from Verilog code?

A. Following is the procedure to configure the parameters from Verilog code:

1. Make the symbol file active by clicking the Symbol Editor canvas or the symbol file tab.

2. Right-click and select Symbol Parameters... to open the Parameters Definition dialog.

3. Under the Misc option (shown on the Right Hand Side), set the parameter to “True”.

This will pass the Parameter as a Verilog DefParam.

