
Introducing

ARTS
Advanced Real-Time Switch
I had offered Cypress to name it Cy-PRESS, but they
refused to take the acronym of
Cypress PSoC Real-time Embedded Scheduler Service.

© 2016 Jörg Meier Software - Entwicklung

What is a task scheduler and how can it help you making
programming easier and cheaper?

Well, that will take a bit of time to explain, so why not get a cup of coffee,
relax, sit back in your chair and read.
Do you have one of these old-fashioned machines that just keep warm the
coffee or do you have one of these modern ones which grind the coffee and
brew it freshly and -if you're a lucky guy- put some hot milk-foam on top of
your mug? Those machines are driven by a microprocessor of course, so let's
think about to put all that logic into a PSoC 4.
How does such a machine work like? Well, there is a grinder and a sensor
telling the machine that enough coffee is grinded. Some noises in my
machine tell me that there is some mechanic at work, so there are a motor
and probably another sensor working. Then a water-pump comes up for a
short time, pauses and then pumps again a selectable amount of hot water
through the coffee powder. Hot water? Oh, yes! So we need a heating and a
temperature sensor. And because some other guys will have espresso or latte
macchiato or just a simple milk-coffee (my favorite, a big one, please) we
need a couple of buttons for selections. Ah, and some safety-sensors that
keep watch that none of the parts of the machine is open while brewing, the
waste-container is not full yet, there's water and there's coffee and there's
milk. A handful of indicators (green or blue or even white LEDs) make our
coffee-brewing-machine look interesting.
Complex enough, but not too complicated to fit into a PSoC 4, so let's think
about, how it should be programmed:

We can Isolate a couple of independent modules:
 The grinder with its sensor(s)
 The heater with its sensor
 The keyboard with a few buttons
 The mechanic motor-driven parts with their sensors
 The water-pump with its volume sensor
 The LED indicators
 Some general sensors for doors (not windows!) and other resources.
 The keypad / button interface

© 2016 Jörg Meier Software - Entwicklung

Now we can easily define the functions for the modules one by one:

Grinder:
Start grinding
When Sensor for coffee comes: Stop grinding.

That easy??
I'm afraid not!
Let's try to translate that into C

void GrindCoffee(void)
{

StartGrindMotor();
while(! CoffeeGrindSensor()); // Wait
StopGrindMotor();

}

Now, what happens, if the sensor doesn't come up (Not enough coffee)?
So we ought to change the logic a bit:

void GrindCoffee(void)
{
unsigned int GrindWait;
#define GRINDTIMEOUT 5000 // should be 5 seconds

StartGrindMotor();
GrindWait = GRINDTIMEOUT; //
while(!(CoffeeGrindSensor() && GrindWait--)); // Wait
StopGrindMotor();
if (!GrindWait) { // Counted down to zero?

// ERROR, we have a timeout!
ErrorStopMachine();

}
}

Looks better, doesn't it? But what happens during the execution of the loop
while(! (CoffeeGrindSensor() && GrindWait--)); // Wait

To be honest, nothing happens at all, all CPU-time is used up checking the
sensor, regardless what is happening in any other part of the machine, the
keyboard, the heat-sensor and so on, THE PROGRAM WILL NOT SEE IT!

© 2016 Jörg Meier Software - Entwicklung

Obviously it would be much better and safer if, while waiting for the sensor to
signal the grinding is ready, the program could look for the keyboard, the
heating and the waste-basket (and for the milk, if you prefer).
So what can we do to get out of this?
The answer is: RTOS, the acronym for "Real-Time Operating System". A
class of programs which ARTS is a member of. When using ARTS the
grinding module could look like this:

Task (GrindCoffee)
{
#define GRINDTIMEOUT (TICKSPERSECOND * 5) // 5 seconds
EventID Delay;

while(forever)
{

WaitForMonitorByte(&StartGrinding); // Wait start
Delay = SetupDelay(GRINDTIMEOUT); // Timeout setup
SetupMonitorByte(&GrindSensor); // Sensor setup
StartGrindMotor(); // Grind
if(Wait() == Delay) // returns EventID that ended Wait
{ // ERROR, we have a timeout!

ErrorStopMachine(); // Handle error
}
else CoffeeGrinded = TRUE;

StopGrindMotor(); // Stop grinding
StartGrinding = FALSE; // Finished

}
}

The difference is, that when using ARTS the line
if(Wait() == Delay)

gives control to a ARTS function named Wait() which in turn gives control to
other defined modules as the heater, the keyboard the waste-basket (and the
milk, if you prefer). At a frequency of up to 1000 times a second these
modules, simple sub-routines as that one for the grinder, are executed and
their functions performed.

© 2016 Jörg Meier Software - Entwicklung

The controlling program could look like

#define STACKDEPTH 30
PumpTask = CreateTask(&PumpWater, STACKDEPTH);
GrindTask = CreateTask(&GrindCoffee, STACKDEPTH);
HeaterTask= CreateTask(&HeatWater, STACKDEPTH);
… and so on
// make coffee
WaterHeated = FALSE;
StartTask(HeaterTask);// We can heat the water while grinding
CoffeeGrinded = FALSE;
StartGrinding = TRUE); // GrindCoffee task sees that
WaitForMonitorByte(&WaterHeated); // wait until water is hot
WaitForMonitorByte(&CoffeeGrinded);// wait until grinded
WaterPumped = FALSE;
WaitForMonitorByte(&WaterPumped);// water hot is a noble

thing
…

You see the pattern? Every time we call a wait-function the ARTS takes over
and schedules the execution to all the tasks still active and running.
But what, if one (or more than one) task uses the CPU for a longer period of
time without calling Wait()? Do the other tasks stall? No, they don't, every
1/1000th of a second the running tasks are interrupted and the scheduler
looks for another task to run. The scheduler takes a Task-Priority into account
when it selects the next task to run. And if there is no task to run? There is a
system's Idle-Task that may send the PSoC into low power mode until the
next time-slice is over.

What does it cost? In Cent?? ARTS takes 3-8k from your program memory. It
uses some Cortex M0 internal resources as the TickTimer. That's all.
What you get? Flexibility! Should be written in bold: Flexibility!!! You want
to warm the cups? You've got a steam-valve? The integration of any new or
altered components or changed designs is much easier with ARTS. Changing
task-priorities? In the first non-ARTS program design example probably a
nightmare, with ARTS a one-liner:

RaisePriority(MyTask);
Anything more? Yeah, you get access to the NMI and the HardFault interrupt
that informs your program of something seriously going on and give a chance
to take appropriate action.

Now for the bad thing: I do not have a coffee-brewing-machine. Still worse: I
have got one, but I am not willing to cannibalize it for the sake of an
interesting PSoC demo. So what have I got? And what have you got??
Fortunately there is the PSoC 4-M Pioneer board CY8CKIT-044 that has got
several hardware components and comes with example projects.

© 2016 Jörg Meier Software - Entwicklung

The PSoC4-M Pioneer Kit

I have set up a demonstration project that shows some of the capabilities of ARTS. I used the
provided examples from Cypress and let them all run in parallel. You will need PuTTY or a similar
terminal emulation to display the results on your PC screen.

A brief overview of the project:

int main()
{

InitializeSystem();
CreateAllTasks();
ARTS_Run(); // Will never return
return 0; // Just to avoid a warning

}

The tasks running in parallel:
void CreateAllTasks(void)
{

ARTS_CreateTask(MyTask,70,1); //Create a task
ARTS_CreateTask(MyTask,70,2); //Create another instance of same task
ARTS_CreateTask(CountTask,70,0); //Create one more task
ARTS_CreateTask(MemTask,80,0); //Task using local memory on stack
ARTS_CreateTask(ShortTask,30,0); //Task that will be aborted by ARTS
ARTS_CreateTask(OneSecTask,70,0); //Task which waits for one second
ARTS_CreateTask(ByteCheckingTask,70,0); //Task which waits for a byte

//becoming non-zero
ARTS_CreateTask(FunctionCheckingTask,70,0);//Task which waits for a

//function returning non-zero
ARTS_CreateTask(ADCTask,70,0); //Reading analog values
ARTS_CreateTask(ProxiTask,64,0); //Proximity sensors on Kit-044
ARTS_CreateTask(TestUART,0x80,0); //UART
ARTS_CreateTask(LightSensorTask,0x80,0);//Ambient light sensor
ARTS_CreateTask(AccelTask,0x100,0); //Accelerometer
ARTS_CreateTask(Producer,0x80,0); //Message producer task
ARTS_CreateTask(Consumer,0x80,0); //Message consumer task
ARTS_CreateTask(ScreenHandler,0x100,0);// Screen output organizer

}

The second parameter of ARTS_CreateTask() is the number of 32-bit stack entries to reserve, the
third is an optional parameter given to the task.

When you look into the ARTS.h file you will see a brief description of all APIs.

Get your Evaluation-board and let the show begin!

Happy coding,
Bob Marlowe

© 2016 Jörg Meier Software - Entwicklung

http://www.cypress.com/documentation/development-kitsboards/cy8ckit-044-psoc-4-m-series-pioneer-kit?source=search&keywords=cy8ckit-044

	What is a task scheduler and how can it help you making programming easier and cheaper?
	The PSoC4-M Pioneer Kit

