A

wa CYPRESS

- EMBEDDED IN TOMORROW™

Introduction to Digital Peripherals

Dheeraj Kamath - Applications Engineer
WW 20 17

Objective

= By the end of this training, you will
v" Learn the digital peripherals available in Cypress’ PSoC 6
v Understand their basic functions

v Learn how to use them in an application using ModusToolbox

Hardware:

PSoC6 BLE Pioneer Kit

PSoC6 WIFI-BT Pioneer Kit
CYB8CPROTO-062-4343W PSoC6 Prototyping Kit

Software;
ModusToolbox 2.1

& CYPRESS

EMBEDDED IN TOMORROW™

Agenda

= Recap

= Quick overview: ModusToolbox 2.1

Introduction
— Digital Architecture

Smart-10
TCPWM
SCBs

= Exercises

Recap

In the previous training we understood:
v"what ModusToolbox is

v what it comprises

v"How to create a project

v the directory structure

v different tools and configurators

v terminologies like HAL, BSP, PDL

v different ecosystems supported by ModusToolbox

Application

T

Board Support Package (BSP)

T

Hardware Abstraction Layer (HAL)

T

Peripheral Driver Library (PDL)

Hardware

ModusToolbox 2.1

What’s new?

= No longer called ModusToolbox IDE
= Proxy Handling Improvements

= Upgrades to Tools and Configurators
= OpenOCD 3.0

Offline Support Package

= Support for third party IDEs
v" IAR Embedded Workbench
v Keil ARM-MDK
v" Visual Studio Code (VSCode)

Toouaoxw

v. CYPRESS

EEEEEEEEEEEEEEEEEEE

Visual Studio Code

File Edit Selection View Go Run Terminal Help e main.c - Empty_PSoC6_App - Visual Studio Code

EXPLORER main.c L]

“/ OPEN EDITO... 1 UNSAVED main.c > @ main(void)
® mainc :
“ EMPTY_PSOC6_APP

.vscode main(

cy_rslt_t result;

B images

s result = cybsp init() ;

-gitignore if (result =
LICENSE {

can work In

¥ Makefile

e _ arabie a0 dark mode!!!

® cyhal gpio
_init
_irg_enable

cy_rslt_t cyhal_gpio_init(cyhal_gpio_t X
pin, cyhal_gpio_direction_t direction,
_irq_event_t cyhal_gpio_drive_mode_t drive_mode, bo
_mapping_cfg_t ol init_val)

_psoc6_01_116_bga_ble_t

_read Initialize the GPIO pin

_read_internal See \ref subsection_gpio_snippet_1.
_register_callback

_register_irqg @param|in] pin The GPIO pin to initialize

_t @param[in] direction The pin direction
_toggle @param[in] drive_mode The pin drive mode
_toggle_internal @param[in] init_val Initial value on the pin

QOIMORL SIS

> OUTLINE
bleasev1.1.0* &3 ®2A102 c|v mainc © You, afew secondsago Ln 59, Col 15 Spaces: 4

& CYPRESS

EMBEDDED IN TOMORROW™

Product Versioning

= The ModusToolbox installation
package is versioned as

MAJOR.MINOR.PATCH. The file located

at /ModusToolbox/tools_2.1/version-2.1.0.xml
also indicates the build number

= Multiple versions installed in parallel in
the same ModusToolbox directory

= Flexibility to use the version you want

v Using Application Makefile

v' Set CY_TOOLS PATH in environment
variable

W

ModusToolbox
ide_2.0
ide_2.1

docs
eclipse
tools_2.0

tools_2.1

Introduction

tr. CYPRESS

EEEEEEEEEEEEEEEEEEEE

PSoC 62 MCU

P SO C6 DeVI C e CY8C62x8, CYBC62xA .
Architecture | ==

4
[]
2 SmatVOPas

Pedpheral ciock (PCLK) |

CPU Subsystem

Cortex MAF CPU
150/80 MHZ, 1.1/08V |4
SWJ, ETM, ITM, CTI

Peripheral nemonnect (MMIO, PPU)

Cortex MO+ CPU
100/25 MHZ, 1108V [
SWJ. MTB, CTI

Jx DMA

Crypto
DES/TDES, AES, SHA,
CRC, TRNG, RSAECC

Pash
2048 KB + 32 KB + 22 KB [
B KB cache for each CPU

SRAMO

512 kB
USB.FS

System hiercamect Mull Layer AHB, IPC. MPU/SMPU)

SRAM1Y
256 KB

SRAM2
28 Kk8 [+

sxs [A K
9 CYPRESS CONFIDENTIAL - e CYPRESS

»” EMBEDDED IN TOMORROW™

PSoC6 Digital Peripherals

= Programmable Digital
v Smart-10 - programmable logic fabric that enables Boolean
operations on signals passing through it
= Fixed-Function Digital
v" Timer/Counter/PWM Block (TCPWM) —

- Timer-counter with compare
- Timer-counter with capture
- Quadrature decoding

- Pulse width modulation (PWM)

v" Serial Communication Blocks (SCB) — digital block that is
configurable as UART, I12C or SPI interfaces

v USB, QSPI, SD Host Controller (out of scope for this training)

10

2 X Smart-10 Ports

32 x TCPWM

SCH

8x 12C, 3P,
LIART, or LIN

dx BC
LUART, or LIM

L2C or SPI

|
e
N 4

CYPRESS

EMBEDDED IN TOMORROW™

High Speed Input Output Matrix (HSIOM)

= Contains multiplexers to connect between the selected peripheral and the pin.

AE
i

I/O Cell
ANRY

11 CYPRESS CONFIDENTIAL

Smart-10

= The Smart I/O block sits between the GPIO
pins and the high-speed I/O matrix
(HSIOM) and is dedicated to a single port.

= Smart I/O supports:
v Deep Sleep operation L
v Boolean operations without CPU intervention e somek - [o

Chip connec tions Routing 1/O connec tions Pinsin a
SMART /O port

from chip to /O
pins

v Asynchronous or synchronous (clocked)
operation

LUT

= Three selectable input sources
v another LUT
v"an internal resource

v"an external signal from a GPIO pin

EMBEDDED IN TOMORROW™

; & CYPRESS

Smart-10 Configurator

C:/Users/ddka/CDC_Training/mtb_02_ex01_smartio_rgb/libs/TARGET_CY8CKIT-062-BLE/COMPONENT_BSP_DESIGN_MODUS/design.modus - Smart 1/0 Configurator 2.1

- >
File View Help
Routing | LUT 0 LUT 1 LT 2 LUT 4
Port: | Port 9 (Smart1/09) * | Clock: | Peripheral clock divider (Active) ~ | Clock divider: | 24.5 bit Divider 0 clk [USED] ~ | 4 show Routing Matrix | | X Clear | =
Chip 7 ‘ Bypass - e
o7z |Bypass hd ‘
Chip 6 ‘ Bypass - [
Jjoe |Bypass - ‘
Chip 5 ‘ Bypass b FE
705 | Bypass v |
Chip 4 ‘ None -
’ Output hd
Chip 3 ‘ Bypass - | [
o3 |Bypass - ‘
Chip 2 ‘ None - |
o Output -

TCPWM[1] 16-bit Counter 20 pwm_n (PWM) [USED] +

Output hd

Chip 0 ‘None b |
1 2
Data Unit ¢
TRO: rst | constant 0+ |
TR1:en | constant 0 ~ |
TR 2: [UNUSED] | Constant 0 ~ |
Ready

13 CYPRESS CONFIDENTIAL

LUT 3

‘ None

‘ None

‘ None

LT 5

| Mone

| Mone

| None

LT 6

| None

| None

| None

LT 7

‘ Mone

‘ None

‘ None

Output -

&= CYPRESS

EMBEDDED IN TOMORROW™

14

_ookup Table (LUT)

B4 C/Users/ddka/CDC_Training/mtb_02_ex01_smartio_rgb/libs/TARGET_CY8CKIT-062-BLE/COMPONENT_BSP_DESIGN_MODUS/design.mod...

File View Help

Routing LUT 0 LUT1 LuUT 2 LUT 4
Mode: | Sequential (gated) output -
TRO Lol
R Table. ~ Out
9
clk

Ready

Mapping:

TR 2: (LUT4)
0

0

TR1: (LUT2)

]

]

Cutput:

TRO: (LUT1)
0

1

Hex v

Set Bit

0x55

|
e
N 4

CYPRESS

EMBEDDED IN TOMORROW™

15

Using Smart-10 in your Application

Steps:

= Go to design.modus file and enable Smart-IO. Use the Smart-10 configurator to define the
Inputs, the outputs and the logical operations to be performed.

= Make use of these APIs (basic) to start the Smart-10 block
Cy SmartIO Init (SMARTIO HW, &SMARTIO config); — Initializes the SMART-IO Block
Cy SmartIO Enable (SMARTIO HW) ; - Enables it

Refer to the code example "Ramping LED using Smart-IO” for more information.

Note: No HAL yet, support only through PDL.

& CYPRESS

EMBEDDED IN TOMORROW™

16

Smart-lO Configurator

Exercise 1:

Configure a PWM to generate a frequency of 1Hz with 50% duty cycle. Route this signal to pin 9[0] using the Smart-10 Block.
In firmware read the output on pin 9[0] and write to LED9 (P13_7) and observe the LED blinking every second.

Exercise 2;

Create a LUT such that it functions as a 8-bit counter. Route the three output signals of the LUT to the RGB LEDs and
observe the colors as shown in the below table.

0 0 0

0 0 1 RED

0 1 0 GREEN

0 1 1 YELLOW

1 0 0 BLUE Refer mtb_02 _ex01 smartio_rgb

1 0 1 PINK project which implements the

1 1 0 INDIGO - .
solution to both the exercises.

1 1 1 WHITE

v. CYPRESS

EMBEDDED IN TOMORROW™

Smart-lO Configurator

Exercise 2 LUT Logic Explained:

Present State Next State

LUT4 LUTZ2 LUT1 LUT4 LUTZ2 LUT1
0 0 0 0 0 1
0 0 1 0 1 0
0 1 0 0 1 1
0 1 1 1 0 0
1 0 0 1 0 1
1 0 1 1 1 0
1 1 0 1 1 1
1 1 1 0 0 0

17

Refer mtb_02_ex01 smartio _rgb
project which implements the
solution to both the exercises.

& CYPRESS

EMBEDDED IN TOMORROW™

18

Timer Counter Pulse Width Modulation

« Multi-functional, configurable digital block
containing 32 counters. Each can be 16
or 32-bit wide.

 Modes:

v Counter — counts events, for e.g.,
number of pulse edges

v Timer — sets up a counter to generate
time intervals

v PWM - Generates pulses based on the
duty cycle, period and compare values

« Up, Down, and Up/Down counting modes

 Clock prescaling (division by 1, 2, 4, ...
64, 128)

TCPWMIO] 32-bit Counter 1 (RED_PWM) - Parameters - Device Configurator 2.1

Enter filter text

MName

-

-

-

-

Peripheral Documentation
(7) Configuration Help
General
(2) PWM Mode
(7) Clock Prescaler
(® PWM Resolution
(2) PWM Alignment
(2) Run Mode
Period
(2) Enable Period Swap
(2 Period
Compare
(2) Enable Compare Swap
(Z) Compare
nterrupts
(@) Interrupt Source
nputs
(2 Clock Signal
(2 Count Input
(@) Kill Input
(2) Reload Input
(2) Start Input
(%) Swap Input
PWM Output Polarity
(2 Invert PWM Output
(2 Invert PWM_n Output
Outputs
(@ PWM (line)
(2 PWM_n (line_compl)
(2) Overflow
(2 Underflow
(2) Compare (cc_match)
Advanced
2) Store Config in Flash

Value

Open PWM (TCPWM) Documentation

PWM
Divide by 1
(% 32-bits
Left Aligned

Continuous

9999

5000
None

& | 16 bit Divider 0 clk [USED]
Disabled
Disabled
Disabled
Disabled
Disabled

<unassigned >
& | PO[3] digital_out [USED]
<unassigned >
<unassigned =

<unassigned =

v

-

|
e
N 4

CYPRESS

EMBEDDED IN TOMORROW™

Timer Counter Pulse Width Modulation

Provides two interfaces:

= /O signal interface:

% Consists of input triggers: 1
v Reload - Counter i 2 32
Trigger inputs =
v
v o E" £ — 16-bit or 32-bit counter Configuration
v Stop 18 L -E Generation - - registers
'—
v Count &
v Capture
\/ 3 . I *
“ Output signals: [
v pwm ———————— e e e TR :
v counter_en 1° ,""’2 pwim, '
pwm_h B underflow interrupt pwm_n :
For each ' v v - !
v overflow (OV L — overflow, |
(OV) Counter i cc_match (capture or compare) :
v underflow (UN) i
v capture/compare (CC)).

= Interrupts: Provides interrupt request signals from each
counter, based on TC or CC conditions

& CYPRESS

EMBEDDED IN TOMORROW™

Counter Functionality

clk counter —p

‘ not

supported in all modes

count event —

active count

counter clock counter clock

Configurable Modes

Counter

i) —P —p
Pre-scaling | pre-scaled B) —» pre-scaled functionality

MODE Field
Mode [26:24] Description

The counter increments or decrements by '1' at every clk_counter cycle in which a count event is detected.
Timer 000 . '

The Compare/Capture register is used to compare the count.

The counter increments or decrements by '1" at every clk_counter cycle in which a count event is detected. A
Capture 010 : ‘ i

capture event copies the counter value into the capture register.

Quadrature decoding. The counter is decremented or incremented based on two phase inputs according to
Quadrature 011 :

an X1, X2, or X4 decoding scheme.
PWM 100 Pulse width modulation.

20 CYPRESS CONFIDENTIAL

A
e
N 4

CYPRESS

EMBEDDED IN TOMORROW™

21

Understanding HAL

= |t is a generic interface that can be used across multiple product families
= The focus is on ease-of-use and portability

API| Structure

= init function — Allocates a block, configures it and enables it.

= free function — Disables a block, releases resources

= Other functions — provide block specific functionality

Timer

= |ncrements/decrements a counter between O and the value stored in the PERIOD
register.

= Used for:
v Timing a specific delay
v" Counting the occurrence of a specific event

MODE = TIMER
UP_DOWN_MOODE = COUNT_UP ‘ COUNTER starts with | period-is PERIOD+1

reload » » !
« 2 * ———————— e e e e e e — e e e e e — e e e — e e e e e -- PERIOD =4
i
=
5
2 o 8 A T - - ! e ———— I- m—pm-— I --CC=2
- : : : : :
: \ : : : :
: H : : : >
0 1 i 1 i »
1 }\ I ! | ! ! I !
Underflow (UN) [
Overflow (OV) 4 \\ ¥ .
Terminal Count (TC) ¥ Y AN v \ 4 ¥ ¥ ¢
Compare/Capture (CC)

no TC event ‘ CC event on leaving the
COUNTER value

- & CYPRESS

EMBEDDED IN TOMORROW™

23

Using Timer in your Application

Steps:
Using HAL APIs:

First configure the timer parameters using cyhal_timer_cfg_t and then initialize and enable it as shown:
const cyhal timer cfg t led blink timer cfg =

{

.compare value = 0, /* Timer compare value, not used */
.period = LED BLINK TIMER PERIOD, /* Defines the timer period */
.direction = CYHAL TIMER DIR UP, /* Timer counts up */

.1s _compare = false, /* Don't use compare mode */

.is continuous = true, /* Run timer indefinitely */

.value = 0 /* Initial value of counter */

}i
cyhal timer init(&led blink timer, NC, NULL);
cyhal timer configure (&led blink timer, &led blink timer cfg);

cyhal timer set frequency(&led blink timer, LED BLINK TIMER CLOCK HZ);

|
e
-

CYPRESS

EMBEDDED IN TOMORROW™

24

Using Timer in your Application

Additionally you can register the callback functions to be triggered when a specific event occurs using the
following APIs:

/* Assign the ISR to execute on timer interrupt */

cyhal timer register callback(&led blink timer, isr timer, NULL);

/* Set the event on which timer interrupt occurs and enable it */

cyhal timer enable event (&led blink timer, CYHAL TIMER IRQ TERMINAL COUNT,

7, true);

Then you can go ahead and start the timer!
/* Start the timer with the configured settings */

cyhal timer start(&led blink timer);

& CYPRESS

EMBEDDED IN TOMORROW™

25

Using Timer in your Application

Steps:
Using PDL APIs:

First configure the timer parameters using the design.modus file and then use the following APIs to start the
timer:

/* Initialize the interrupt */
Cy SysInt Init(&timer isr config, timer isr);

NVIC EnableIRQ(timer isr config.intrSrc);

/* Start the timer */
Cy TCPWM Counter Init (TIMER HW, TIMER NUM, &TIMER config);
Cy TCPWM Counter Enable (TIMER HW, TIMER NUM) ;

Cy TCPWM TriggerStart (TIMER HW, TIMER MASK) ;

& CYPRESS

EMBEDDED IN TOMORROW™

26

Counter

= The capture functionality increments and decrements a counter between 0 and

PERIOD. When the capture event is activated the counter value COUNTER is copied
to CC.

= Used for:

v Measuring the width of a pulse

v Measuring the frequency of a signal

27

Using Counter in your Application

Steps:
Using PDL APIs (HAL not supported):

First configure the timer parameters using the design.modus file and then use the following APIs to start the
timer:

/* Start the timer */
Cy TCPWM Counter Init (COUNTER HW, COUNTER NUM, &COUNTER configqg);
Cy TCPWM Counter Enable (COUNTER HW, COUNTER NUM) ;

Cy TCPWM TriggerStart (COUNTER HW, COUNTER MASK) ;

To read the captured values use:

Cy TCPWM Counter GetCapture ()

& CYPRESS

EMBEDDED IN TOMORROW™

28

Timer/Counter

Exercise 3:
Configure a timer to generate an interrupt every 1s and toggle the LED. Use only HAL APls.

Refer mtb_02_ex04 _timer_hal project which implements the solution to this exercise.

Exercise 4.
Configure a timer to generate an interrupt every 1s and toggle the LED. Use only PDL APls.

Refer mtb_02_ex05_timer_pdl project which implements the solution to this exercise. Compare this with the previous
exercise. Which do you think was easier?

Exercise 5:

* Generate a 250 Hz signal with any duty cycle using PWM
« Use a Counter to measure counts between PWM pulses
* Print measured frequency to serial terminal using UART

Refer mtb_02_ex06_counter_dutycycle project which implements the solution to this exercise.

|
e
N 4

CYPRESS

EMBEDDED IN TOMORROW™

PWM

MODE = PWM
UP_DOWN_MODE = COUNT_UP

%]

i Y

&n

‘!r&had

L1
COUNTER

Underflow (LUM)

Overflow (OV)

Bl

b

Terminal Count (TC) ¥
Compare/Capture (CC)

-

Laft aligned PYWI

CC = pulsa width
OVERFLOW _MODE = SET
CC_MATCH MODE = CLEAR

B

pwm

Bight aligned P

CC = (PERIOD+1) - pulse widlh
COVERFLOW MODE = CLEAR
CC _MATCH MODE = SET

pwm

29 CYPRESS CONFIDENTIAL

CC
PERIOD =4

w UYPRESS

EMBEDDED IN TOMORROW™

30

Using PWM in your Application

Steps:

Using HAL APIs:

Add the following code directly in main.c to interact with the PWM block
cyhal pwm init (&pwm obj, CYBSP USER LED, NULL);

cyhal pwm set duty cycle (&pwm obj, 50, 1);

cyhal pwm start (&pwm obj);

Using PDL APls:

Configure a PWM in design.modus file with the required parameters and then call the following APIs:
Cy TCPWM PWM TInit (PWM HW, PWM NUM, &PWM config);

Cy TCPWM PWM Enable (PWM HW, PWM NUM) ;

Cy TCPWM TriggerStart (PWM HW, PWM MASK) ;

|
e
N 4

CYPRESS

EMBEDDED IN TOMORROW™

31

PWM

Exercise 6:
Configure a PWM to generate a frequency of 1Hz with 50% duty cycle using HAL and PDL APIs. Check if there is a conflict.

Solution key: Refer mtb_02_ex02_pwm_blinkyled project for this solution.

Exercise 7:

Configure a PWM to increase the brightness of the LED to its maximum and then decrement to its lowest. Hint: Vary the duty
cycle every 500ms to observe the output on the LED.

Solution key: Refer mtb_02_ex03 pwm_brightness_control project for this solution.

& CYPRESS

EMBEDDED IN TOMORROW™

Serial Communication Block (SCB) 5 - Parameters - Device Configurator 2.1 n

Serial Communication Block .0 e

Name Value =
(2) Configuration Help Open UART (SCB) Documentation
- 5 - J48I- . N ~ General
« Multi-functional, configurable digital communication block ® Com Mode Standard .
- Can be made to function as communication components: - gii::;;bm — -
v 12C (2) Bit Order LSB First v
(?) Data Width 8 bits -
‘/ SPI (2) Parity None v
(7) Stop Bits 1 bit v
v' UART () Enable Digital Filter
¥ Support RS-485
« Standard SPI master and slave functionality with Motorola, . fi?i;TX-’Enab'e
Texas Instruments, and National Semiconductor protocols 2 Enable Flow Contro
Standard () CTS Polarity Active Low v
(2) RTS Polarity Active Low -
* UART functionality () RTS Activation Level 63
v Connections
« Standard 12C master and slave functionality & Clock <unassigned> -
) ‘ () RX <unassigned> v
« Trigger outputs for connection to DMA @ X <unassigned- -
- Multiple interrupt sources to indicate status of FIFOs and o RXTrigger Output <unasigned>
(2) TX Trigger Output <unassigned>
tranSfeI‘S ¥ Actual Baud Rate
Actual Baud Rate (bps) |
Baud Rate Accuracy (%) |
Clock Frequency =
v Trigger Leve
(2) RXFIFO Level 63
(7) TXFIFO Level 63
¥ Multi Processor Mode
(2) Enable Multi Processor Mode
(7) Address 0 ~

& CYPRESS

EMBEDDED IN TOMORROW™

33

Serial Communication Block

UART

* Universal asynchronous transmitter and receiver

« Half duplex, full duplex,, only TX and only RX modes

* Two wire — Transmit (TX) and Receive (RX)

No Clock line

* Typically used baud rates — 9600 to 115200 bps

» Additional pins — flow control functionality

* Usually between two devices

1

J 1 Do
0---

/‘\

-
Mark
D1 D2 D3 | D4 D5 | DB | D7 | Par 1]
- -« Space
74
/
Data bits Parity bit Stop bit(s)

Start bit

AR
=

CYPRESS

EMBEDDED IN TOMORROW™

34

Serial Communication Block

UART

* Universal asynchronous transmitter and receiver

« Half duplex, full duplex,, only TX and only RX modes
* Two wire — Transmit (TX) and Receive (RX)

* No Clock line

* Typically used baud rates — 9600 to 115200 bps

» Additional pins — flow control functionality

* Usually between two devices

1— [a] (b)
CLOCK |i i
DATA LJ{ IR Y
DATA L

DEVICE

START

DATAD

DATA1

DATAZ

DATA3

DATA4

DATAS

DATAG

DATAY

PARITY
STOP

ACK

|
e
N 4

CYPRESS

EMBEDDED IN TOMORROW™

Serial Communication Block

UART

Universal asynchronous transmitter and receiver
Half duplex, full duplex,, only TX and only RX modes
Two wire — Transmit (TX) and Receive (RX)

No Clock line

Typically used baud rates — 9600 to 115200 bps

12C

Inter-integrated circuit (11IC / I2C)

Half duplex protocol

Two wire — Serial Data (SDA) and Serial Clock (SCL)
Typically used clock rates — 100 kHz to 400 kHz

A master can talk to 127 slaves

» Additional pins — flow control functionality

* Usually between two devices

7 address bits 8 data bits

SDA ¢ | ‘J}GX%XMXMXMXMXA@XRM\A'CEE/
' A A Y & 4' -

\ .f_‘p‘fXDsXDsXmeXDzXmXbb_"\(}g\'ck'f Vo
- - - - - . I R P - = "..' - :

v ACK/NACK: A '1"in this position . Stop condition:

* indicates that the addressed slave - SDA goes high after SCL
did not respond or was unable to
process the request,

Start condition: '1" - Master is requesting data, !
SDA goes low before SCL '0" - Master is sending data

& CYPRESS

EMBEDDED IN TOMORROW™

36

Serial Communication Block

UART

* Universal asynchronous transmitter and receiver

« Half duplex, full duplex,, only TX and only RX modes
* Two wire — Transmit (TX) and Receive (RX)

* No Clock line

* Typically used baud rates — 9600 to 115200 bps

» Additional pins — flow control functionality

* Usually between two devices

12C

Inter-integrated circuit (11IC / I2C)

Half duplex protocol

Two wire — Serial Data (SDA) and Serial Clock (SCL)
Data rates from 100 kbps to 1000kbps

A master can talk to 127 slaves

SCLK » SCLK
SPI MOSI P MOSI SPI
Master MISO ¢ MISO Slave
SS » SS
—p| SCLK
»| MOSI SPI
MISO Slave
»| §§
—p| SCLK
| MOSI SPI
MISO Slave
————————p| SS

SPI

Serial peripheral interface
Full duplex protocol
Four wire —
*Master Out Slave In (MOSI)
*Master In Slave Out (MISO)
*Serial clock (SCK)
*Slave Select (SS)
Typically used data rates — 1 Mbps to 8 Mbps

& CYPRESS

EMBEDDED IN TOMORROW™

Serial Communication Block

SCK
Clock from
Master

MOSI
Master-Dut
Slave-In

MISO

Master-in
Slave-0ut

Master to Slave

Slave to Master

Lttt WL

01234567

01234567

37

SPI

Serial peripheral interface
Full duplex protocol
Four wire —
*Master Out Slave In (MOSI)
*Master In Slave Out (MISO)
*Serial clock (SCK)
*Slave Select (SS)
Typically used data rates — 1 Mbps to 8 Mbps

& CYPRESS

EMBEDDED IN TOMORROW™

38

Serial Communication Block

R W S N S S
et a W abalaWaWaliala
e UaVa Ve UaWa Vsl
= Ua Ua Ua VaWa UaVaVan
e\ AN

2 -(WX A% X XWX XU'XDU)-

SPI

« Serial peripheral interface
* Full duplex protocol

* Four wire —

*Master Out Slave In (MOSI)
*Master In Slave Out (MISO)
*Serial clock (SCK)
*Slave Select (SS)

* Typically used data rates — 1 Mbps to 8 Mbps

b. CYPRESS

EEEEEEEEEEEEEEEEEEEE

UART

Exercise 8:
¢ Use the project from Exercise 6 (Generate PWM signal of 100 Hz frequency with 10% duty cycle)
¢ Print the PWM parameters (duty cycle, compare value, period) on a PC terminal using UART

¢ Control PWM duty cycle from the PC (increase or decrease by 10% upon two different keypresses)

Solution key: Use mtb_02_ex06 counter_dutycycle project for reference.

Useful APIs:
Retarget-lO Middleware — cy retarget io init (CYBSP_DEBUG UART TX, CYBSP DEBUG UART RX, 115200);

Then make use of standard IO library functions like printf, sprintf etc. to read or print something to the terminal.

3 & CYPRESS

EMBEDDED IN TOMORROW™

12C

Exercise 9;:

Control PWM brightness by writing data from an 12C master (use KitProg3 as master; using Bridge Control panel (BCP) on
PC)

Solution key: Refer mtb_02_ex07 _i2c_brightness_control project for this solution.

Useful APIs:

/* Allocate and initialize a I2C resource and auto select a clock */

cyhal i2c init(&iZ2c_slave, CYBSP I2C SDA, CYBSP I2C SCL, NULL);

/* Configure the I2C resource to be slave */

cyhal i2c configure (&i12c slave, &iZ2c slave cfg);

/* Configure I2C slave write buffer for I2C master to write into */

cyhal i2c slave config read buff (&i2c slave, 1i2c write buffer, SL WR BUFFER SIZE);
/* Configure I2C slave read buffer for I2C master to read from */

cyhal i2c slave config write buff(&iZ2c slave, 1i2c read buffer, SL RD BUFFER SIZE);

& CYPRESS

EMBEDDED IN TOMORROW™

41

SPI

Exercise 10:

Setup PSoC as both an SPI master and slave. SPI master sends a command every second to a SPI slave to toggle the LED.
Use HAL APIs.

Solution key: Refer mtb_02_ex08 spi_master project for this solution.

Useful APIs:

cyhal spi init () - Initializes the SPI block and configures it as slave or master.
cyhal spi set frequency() - setthe SPIbaud rate

cyhal spi send() - Sends the command

cyhal spi recv() - Receives the command

& CYPRESS

EMBEDDED IN TOMORROW™

42

Resources

= ModusToolbox User Guide

= Cypress Github Landing Page
= PSoC6 Architecture TRM

https://www.cypress.com/file/492951/download
https://github.com/cypresssemiconductorco/amazon-freertos
https://www.cypress.com/file/399201/download

43

Contact Information

= https://[community.cypress.com/welcome

= Send your gueries to ddka@cypress.com

https://community.cypress.com/welcome
mailto:ddka@cypress.com

‘CYPRESS

v EMBEDDED IN TOMORROW™

